
Non-Parametric Bootstrapping



Statistical Modeling: Deterministic Components

Statistics stands out from other quantitative fields primarily
because of the incorporation of probabilistic functions
All statistical modeling incorporates some form of
deterministic component:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖



Statistical Modeling: Probabilistic Components
And a probabilistic component:

... + 𝜖𝑖

𝜖𝑖 ∼ [⋅]

Putting these in the context of the full context of the simple
linear model:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖 + 𝜖𝑖

𝜖𝑖 ∼ 𝑁(0, 𝜎2)
In Statistics, we accept that uncertainty exists in real and
complex systems.
Given that, we model this uncertainty to generate a greater
understanding of these real, complex systems.



Motivating Example: Zaire Ebolavirus

In 1995, the city of Kikwit in the Democratic Republic of the
Congo (formerly Zaire) experienced a devastating outbreak of
Ebola virus, resulting in the death of ≈ 236 individuals.
Ebola virus is a fast moving disease; highly pathogenic,
contagious, and lethal.
Despite the tragedy that occurred during this outbreak, we’ve
been able to learn a staggering amount about how to improve
public health management in disaster scenarios.



Time series of outbreak: Disease onset
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Time series of outbreak: Deaths
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Time series of outbreak: Full Progression
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Model Proposals: Simple Linear Model

The primary predictors for all disease spread are space and
time.
Since this is isolated to one location, time is our only predictor
of interest.

𝑦𝑖 = 𝛽0 + 𝛽1𝑡𝑖 + 𝜖𝑖

𝜖𝑖 ∼ 𝑁(0, 𝜎2)

Does this seem like an appropriate model?



Model Proposals: Generalized Linear Model

Generalized Linear Model Framework:

𝑦 ∼ [𝑦|𝜇, 𝜓]
𝑔(𝜇) = 𝑋𝛽

Since positive cases are a discrete count of occurrences, it’s
justifiable that the Poisson distribution holds:

[𝑦|𝜇, 𝜓] = Pois(𝜇)



Model Proposals: Final Model

Resolving on a distributional assumption of Poisson for my
generalized linear model, the final model is:

𝑦𝑖 ∼ Pois(𝜆𝑖)

𝜆𝑖 = 𝛾0 + 𝛾1𝑡𝑖 + 𝛾2𝑡2
𝑖

Why the polynomial?



Model Fitting: Onset
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Model Fitting: Deaths

0

5

10

0 50 100 150 200
Days

D
ea

th
s

Kikwit Ebola Outbreak Deaths



Confidence Intervals

We’ve previously learned that confidence intervals are a
method for calculating uncertainty in our parameters:

𝑃(𝐿(𝑥) ≤ 𝑥 ≤ 𝑈(𝑥)) = 𝑝

Where:

𝐿(𝑥) ≡ Lower interval of 𝑥

𝑈(𝑥) ≡ Upper interval of 𝑥

And 𝑝 is loosely, and arbitrarily defined as = 0.95



The Delta Method

1. Obtain the estimate for your variable

i. Least-squares regression

2. Obtain the standard error for your variable

i. Calculate the jacobian matrix of the inverse link function
of 𝑋𝛽, 𝐽

ii. Get the variance-covariance matrix, 𝑉
iii. Sandwich multiply the matrices: 𝐽𝑇 𝑉 𝐽

3. Add/Subtract the standard error multiplied by your
interval value from the variable estimate



The Delta Method

Var[𝑃 (𝑋𝛽)] = (𝑑(𝑃(𝑋1𝛽))
𝑑(𝑋𝛽) )

𝑇
𝑉 (𝑑(𝑃(𝑋1𝛽))

𝑑(𝑋𝛽) )

𝑈(𝜃)𝑖 = 𝜃𝑖 + 1.96 ∗ 𝑆𝐸𝜃

𝐿(𝜃)𝑖 = 𝜃𝑖 − 1.96 ∗ 𝑆𝐸𝜃

Pros:
▶ Consistent process, works well when it works
▶ Hypothetically computable by hand

Cons:
▶ Becomes less reliable as distributions change
▶ Falls apart when the model become non-linear



Non-parametric Bootstrapping

Bootstrapping is a computational algorithm for obtaining
confidence intervals for a wider range of models than the Delta
method.

1. For a data set of 𝑛 size, take a sample of size 𝑛 with
replacement

2. Estimate the parameters for a statistical model using the
sampled data from step 1.

3. Save the estimates of interest.
4. Repeat steps (1-3) 𝑚 times.

▶ App Example:
https://rmsholl.shinyapps.io/bootstrap_showcase/



Bootstrapping Algorithm Syntax in R

# set seed for reproducibility
set.seed(1)

# repeat m times
m_boot <- 1000

# initialize matrix for saving results
save_matrix <- matrix(,m_boot,1)

# for loop iterated by m from 1 to m_boot value
for(m in 1:m_boot) {

# sample size of n with replacement
samples <- sample(1:nrow(data),replace=TRUE)

# temporarily save the samples from the data
boot_data <- data[samples,]

# run the model with this sampled data
model_boot <- lm(y ~ x, data=boot_data)

# save the outputs
save_matrix[m,] <- coef(model_boot)[1]

}



Bootstrapping Algorithm Psuedocode

1: 𝑛 ← data
2: 𝑀 ← statistical model
3: 𝑚 ← 𝑥 where 𝑥 ≥ 500
4: 𝑠 ← empty list ▷ List for saved samples of the data
5: 𝑄 ← empty queue ▷ Queue for saved samples
6: 𝑆𝜃 ← ⃗0, 𝑚, ⃗1 ▷ 𝜃 is some statistic of interest
7: for each 𝑚 do
8: 𝑛(𝑠) ← resample 𝑛 where replacement = TRUE
9: enqueue 𝑠 into 𝑄

10: fit 𝑀 to 𝑄
11: 𝑀(𝑠) ← 𝑀(𝑄)
12: append 𝜃(𝑀(𝑠)) to 𝑆𝜃 at row 𝑚
13: end for



Bootstrapping with Mosaic

library(mosaic)

predict_ps_o <- function(){
m1 <- glm(onset ~ days, family = poisson,data=resample(ebola))
p <- predict(m1,newdata=data.frame(days=150),type="response")
y <- rpois(1,p)
y

}

bootstrap_onset <- do(1000)*predict_ps_o()

predict_ps_d <- function(){
m1 <- glm(death ~ days, family = poisson,data=resample(ebola))
p <- predict(m1,newdata=data.frame(days=150),type="response")
y <- rpois(1,p)
y

}

bootstrap_deaths <- do(1000)*predict_ps_d()



Bootstrap Histograms: Onset
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Bootstrap Histograms: Deaths
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Fun with Bootstrapping
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More Fun with Bootstrapping
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Even more fun with Bootstrapping
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